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ABSTRACT 

In this paper certain subsequence ergodic theorems which have previously 

been known in the case of measure preserving point transformations are 

extended to Dunford-Schwartz operators, positive isometries, and power 

bounded Lamperti operators. 

1. In troduct ion  

Let (X,  .T', p) be a probability space. Let T denote a linear operator  of L p = 

LP(X, ~', p), 1 < p < c~, and {nk}~=0 an increasing sequence of positive inte- 

gers. In this paper  we will be concerned with the almost sure convergence of the 

averages 

1 N - 1  
(1.1) -~ ~ Tn'(f)(x) 

k-----0 

for f E L p. In some cases we will assume T is a linear operator  on L p for a fixed 

p, and in other cases we will assume T is a linear operator on L p for all p in 
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an interval. Such "subsequence ergodic theorems" have been studied by many 

authors, notably Baxter and Olsen [4], Bellow and Losert [8], [9], Bourgain [10], 

[11], [12], and Wierdl [29]. 

If the operator T has the form T ( f ) ( z )  = f o r ( z ) ,  where r is a measure pre- 

serving point transformation, we will say that T is induced by the measure pre- 

serving point transformation r. If ]ITII, _< 1 and ]1TI1¢¢ < 1, we will say that T is 

a Dunford-Schwartz operator. By the density of the sequence {nk} we will mean 

lim [{n~}k~--° f3 [1,NIl 
N--.o¢ N ' 

if this limit exists. Here ]A] is the cardinality of the set A. 

To avoid certain measure theoretic difficulties, we will assume throughout the 

paper that (X, .T,/~) is a Lebesgue space. 

In Section 2 of this paper we study maximal inequalities associated with av- 

erages given by (1.1). Section 3 uses the results of Section 2 to prove a.e. con- 

vergence of these averages for certain classes of sequences, and general operators 

such as Dunford-Schwartz operators and power bounded Lamperti operators. In 

particular, for these more general operators, we will have convergence for the 

block sequences considered by Bellow and Losert [8]. 

In [4] Baxter and Olsen show that if {nk}~=0 has positive density, and if the 

averages given by (1.1) converge for each T induced by a measure preserving 

point transformation, then this same limit exists almost surely for T a Dunford- 

Schwartz operator. Section 4 of this paper generalizes their result to the case 

of zero density. In the case of zero density a norm inequality for the associated 

maximal function, such as obtained in Section 2, is also needed. (In the case of 

positive density the necessary norm inequality for the maximal function always 

holds for trivial reasons.) 

For special sequences {nk}k°°=0 that have zero density, Bourgain, in a sequence 

of papers, [10], [11], [12], obtains the existence of the limit for averages of the 

form (1.1) for all T induced by measure preserving point transformations. In 

particular he obtains this convergence for nk = k 2, for all f E L p, p > 1. The 

results of Sections 2 and 4 will establish conditions under which the convergence 

of (1.1) for operators on L p, p > 1, which are induced by measure preserving 

point transformations, implies the convergence of (1.1) for Dunford-Schwartz 

operators. In particular, combining our results with those of Bourgain, we will 

show that for f E L p, p > 1, and for T a Dunford-Schwartz operator, a.s. 
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convergence takes place along {nt}~°=0 where nk = k 2. Using the results of 

Bourgain [11] and Wierdl [29] we obtain convergence for such operators when nk 

is the kth prime. 

2. D o m i n a t e d  E s t i m a t e s  

In this section we will obtain several "strong type" norm inequalities that we will 

use in later sections. Since we will want to use these inequalities in more than 

one context, we will generalize our notation. In this section, a "subsequence" 

will be a function n : N x N ~ N such that 

(a) - (k l , /1 )  > n(k2,l~) if£1 > ~ 

and 

(b) , , (k l , , )  > if kl > ks. 

Our usual subsequence {nt}t°°__0 will then be the subsequence n(k, ~) = nt. for all 

k. 

Let T be a linear operator on L p. We will define the operators 

1 t-1 
(2.1) A~,t(f)(z) = ~ E T"(k'J)(/)(x)' 

j=0 

(2.2) MK, L(f)(z) = sup IAk,t(f)(x)l 
k < K  

and 

(2.3) M(f)(z)  = sup IAk,l(f)(2:)l. 
k,l  

Note that it is possible for M(f)  to be +oo. 

If T(f)(z)  = w(x)f(rx) where r is a point transformation, r : X ~ X, we 

will say that T is induced by the point transformation r with weight function w, 

generalizing the measure preserving case. If the operator T is induced by a point 

transformation r ,  and r is aperiodic, we will say that T is aperiodic. 

Operators induced by point transformations are more general than might be 

expected. In 1958 J. Lamperti [23] proved that if T is a linear operator on a space 

LP(X) for some p # 2, and ][Tf][p = [If lip, then there is a function w(x) and a 
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transformation S such that T f ( x )  = w(x )S f ( x ) ,  where the transformation S is 

induced by a "regular set isomorphism". In other words, S(XA) = s(A) where 

s satisfies s (X  - A) = s (X)  - s(n) ,  s (Un°°=l An) = Un°°__, s(An) for disjoint An, 

and #(sA) = 0 if and only if #(A) = O. Assuming suitable regularity conditions 

on (X, ~') (X a complete separable metric space and 9 v the a-algebra of Borel 

sets) the set isomorphism s can be shown to be induced by a non-singular point 

transformation. (See [15] pages 453 and following for more details.) See also [14] 

and [27]. For the ease p = 2 see [5]. Thus isometries on LP(X) are induced by 

point transformations. 

We will say that T admits a dominated estimate along n ( k , j )  in L p with 

constant c if ][Mfllp < c][f[[p, where T is the operator used in (2.1) and (2.3). 

In this section, we generalize the construction of Jones [19] to show that  if 

there exists a single aperiodic positive invertible isometry S, induced by a point 

transformation a, such that S admits a dominated estimate along n(k, ~) with 

constant c, then T admits a dominated estimate along n(k , l )  for all aperiodic 

positive invertible isometries T. This in turn will imply that T admits a domi- 

nated estimate in L p for all Dunford-Schwartz operators T. 

2.1 THEOREM: Let S and T be positive invertible isometries of LP(Y,5,  v) and 

LP(X, .~, #) respectively, 1 < p < co. I f  S is aperiodic and admits a dominated 

estimate in L p with constant c along n(k , j ) ,  then T also admits a dominated 

estimate Mong n(k , j )  in L p with constant c. 

Proof: Let T and S be induced by the non-singular point transformations 7 

and a respectively. Let {w,,} and {win} be the functions such that T " ( f ) ( x )  = 

wn(x ) f ( v"x )  and Sn( f ) (y )  = w~(y)f(any).  First assume that ~" is aperiodic, 

then given e > 0 and N, there exist disjoint sets A1, A2, . . . ,  AN such that 

~-: A~ ~ Ak+l, k = 1 , 2 , . . . , N - I ,  a n d p ( x - u N = l A i )  < e. (See [18] page 

71 for a proof in the measure preserving case. The details necessary here can be 

found in [26] in the case when the measure is non-atomic. If the space contains 

atoms, small but straightforward modifications are required.) Further, from the 

construction of these sets, we see that if N = m 2, the sets Amp-m+1, Amp-m+2, 

• .., AN=m2 can be taken to have total measure less than l / re .  (See [26].) We 

will say the sets A1, . . . ,  AN form a Rohlin-Kakutani tower for r with height N 

and error less than e. 
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Let f E L p. Fix K and L. Let M T be defined b y  K,L 

MT, L(f)(x) = s u p  IA~t(f)(x)l 
k < K  t~L 

where MT,L and A T denote the dependence on T of the operators (2.1) and k,?. 
(2.3). Choose 6 such that 

EIMT, L(f)(x)IPd# < e if p(E) < ,5. 

Let m be an integer such that  1/m < 6/2, and 

m > sup n(k,~). 
k < K  
t<L 

Let A1, A2,---, A,~2 be the sets of a Rohlin-Kakutani tower for r ,  with error 
i n  2 

less than ~/2, and such that p(Ut=,~2_,,,+l Ak) < 6/2. Let B1, B2, . . . ,  Bin, 

be the sets of a Rohlin-Kakutani tower for a. Let fl be a constant such that 

p(A1) = fly(B1). Then AI has the same measure as B1 with respect to the 

measure fl•. Let £ be a 1-1 measure preserving transformation from A1 onto B1. 

If supp(f)  C A1, define the mapping H by H(f)(y) = f(e-ly)fll/p. Then H 

maps LP(A1) to LP(B1), and in fact 

=fm lY(t-aY)lP/~d~' 

=/A, If(z)lPdl~" 

m 2 rn 2 
Let A = Uk=~ Ak, B = Uk=~ B~, and extend n : LF(A) ---, LP(B) as follows: 

First extend e from A~ ~ B~ t o / :  : A ---, B by / : (x )  = (aktr-k)(z) for x E Ak, 

k = 1, 2 , . . . ,  m 2. Now define 

= 

wkta- y) 

We note that supp(Hf )  C Bk if supp(f)  C Ak, and that 

w~+~(~) = ~ ( ~ ) ~ . ( ~ ) ,  
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with a similar equation for {w'} and a. 

If supp(f) C Ak then 

f lf(x)lPd~ = / If(x)XA' (x)l'dP 

= / [f(r~x)XA' (rkac)lr'w~(x)d~t 

=/A, If(~%)l=w[(x)dt' 

=fm If(rJ'e-~U)l'w['(l-aU)fld~' 

= fl/~, If(rke-'u)l'wPk(e-~U)X~ , (y)d,~ 

-- ~ / If(rke -~,r-ku)l',~[(~-k~ke-' ~-kU)XB, (,,-~u)w" du)dv 

= fl / If(C-~U)I~w[(~'-kC-~U)XB. (U)~'--du)d" 

= flfB., f(£-ly'~,, , pwk(r-kg-lY)PdUwtk(a_ky) p 

since w~_k(y) = (w~(a-ky)) -I. Therefore, 

A. lflPd/'t = lB. lH flndv 

and from this we have 

a If(x)Ipd/z = /B IH(f)(Y)IPdv" 

Let f _) O. Fix x EArN supp(MT, Lf(X)). Then there exist integers k ~_ K and 

£ _~ L such that 

1 £-1 
Mt~,Lf(z ) = ~ ~ Tn(k'J)(f)(z) 

j=O 

1 t-~ 
= -~ ~ f(7"n(k'J)X)Wn(k"l)(X)" 
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If V = £x,  then 

1 L-~ 
A[AHI)(~/) = ~ ~ S~(~"(HI)(y) 

j=O 

1 t-] 
= _ Z(nf)(:(k,i)v)~'(~,,(v) 

£ j=o 

1 ~-,t-I {{£-lo'n(k'J)'y)3 Wr+n(k,J)(T--(r+n(k'J))L--lo'n(k'J)V) 

x ~'(~,i)(v)/~]/P 

1 l--1 = ~ ~ f(~-lon(k,j)y) Wr+n(k,i)('r-(r+n(k'D)~ -I O"(kJ)+ro-ry) 

j=0 w'~+ ,,f k,i) ( u-" v ) 

x ~'(k,.(y)/~m' 

1 ~ t :L_la. ( t , j )"  ~w~+.(k,j)(C-lu-~y)w , :. ~al/p 
= -~ Z_~ Jt vs ~ ,,(~,s)tvm 

j=O r+n(k , j )~  ] 

1~ m_,,(k,~)x ~ w,+,,(~,i)(r-'x) - , 

l - - 1  / - - r  1 v "  . . . ( k ,~ )  . Wrl,'r x) WnCk,j)(X) , 
= ~ L]tT X) W ~  ~) W~(k,j)(£ T,)U1n(k'J)(~ Ir')/~I/P 

j=0 

wk(<rx) AI/.! 
= w~(a_r£ x) ~" ~ f(rn(k'J)X)W"(k,J)(x) 

j=O 
= H(MTLf)(x). 

From this we see that Ms,6(n f)(v) >_ H(MIL:)(V ). Thus we have 

ItM2,,L:g = f,: IM~,~/(x)l'd. 

<-/A IMILf(X)l'd" + 

However we have shown that on A, H preserves LP norms, hence we have 

<_ IIMSL(H f)II~ + 
_ cllH(f)ll; + 

_< c[Ifll~, + ~. 
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Let e ---* 0, and then take supremums over K and L to complete the proof 

in the case r aperiodic. If ~- is periodic with period d, the only modification 

needed to make the argument work is to replace the sets A1,A2,...,Am~ by 

disjoint sets A1,A2,. . . ,Ad where z E A1 implies rk(x) E Ak, k = 1,2,. . . ,d,  

and rd+l(x) = x. Using the fact that r ,  and hence r -1, is periodic, the map 

£(x)  = (ak£r-k)(z)  can still be used to extend H : LP(A1) ~ LP(B1) to 
m 2 r n  ~ 

H : LP(Uk= 1 Ak) ~ LP(Uk= 1 Bk). The remainder of the proof is the same 

with minor modifications based on the fact that Wn+d(Z) = w,,(x). | 

2.2 COROLLARY: Let T be dominated by a positive contraction of L p, p lqxed, 

1 < p < oo. I f  there exists an aperiodic positive invertible isometry that admits 

a dominated estimate along n (k , j )  with constant c > 1, then so does T. 

Proof." Since T is dominated by a positive contraction we may assume that T is 

positive. By [3] we may assume that there exists a positive invertible isometry Q 

and a conditional expectation operator E such that T" = EQ"  for n = 1, 2, . . . .  

Note that  because E is positive, we have M T f  < E M Q f .  Since E is positive 

and a contraction of all L p spaces, we may assume that T is a positive invertible 

isometry. The corollary now follows from Theorem 2.1. | 

Another family of operators on L v spaces are the Lamperti operators studied 

by Kan [21]. A Lamperti operator is a linear operator that separates supports. 

If T : Lv --+ Lv is a linear operator with the property that there exists a constant 

b such that  ]IT"lip _< b for all n, then we say that T is power bounded with power 

bound b. We now extend Corollary 2.2 to power bounded Lamperti  operators. 

2.3 COROLLARY: Let T : L v ~ L v, p fixed, 1 < p < 0% be a power bounded 

Lamperti operator with power bound b. I f  there exists an aperiodic positive 

invertible isometry S : L p ---* L p such that S admits a dominated estimate along 

n ( k , j )  with constant c, then T admits a dominated estimate along n ( k , j )  with 

constant bc. 

Proof: By Corollary 4.1 of [21], there exists a positive Lamperti  contraction 

such that I T " f [  = bTnlfl. The corollary now follows from Corollary 2.2. | 

2.4 COROLLARY: Fix p, 1 < p < oo, and let {nk} be an increasing sequence 

of positive integers such that every T induced by a measure preserving trans- 

formation admits a dominated estimate in L p along {nk}. Then operators that 

are dominated by positive contractions, and power bounded Lamperti operators 
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of L p, admit a dominated estimate in L p along {nk}. /n particular, Dunford- 

Schwartz operators admit a dominated estimate in L p along {nk}. 

Proof." In the notation of this section, {nk} corresponds to the subsequence 

defined by n(k, j )  = nj for all k. Note that Dunford-Schwartz operators are 

dominated by positive contractions (the linear modulus). See [22]. The result 

now follows by an application of the above theorem and corollaries. I 

Bourgain ([10] [11] [12]) has shown that  for nk = k 2, or more generally for 

nk = k', t integer, for p > 1, T admits a dominated estimate in L p along {nk} 

when T is induced by a measure preserving transformation. Thus we now have 

that all the types of operators thus far considered admit a dominated estimate in 

L p along {nk}. In particular, if T is Dunford-Schwartz, T admits a dominated 

estimate in L p, 1 < p < co along {nk} for nk = k 2 or more generally k t. 

3. Moving Averages and Block Sequences 

The moving averages considered by Bellow, Jones and Rosenblatt [7] are averages 

of the form 

i'----0 /----0 

where T is induced by the measure preserving transformation r and {nk,£k} is 

a sequence of pairs of positive integers. In [7] conditions are investigated under 

which 

lim Ak(f)(x)exists  a.s. for f e L  p, l _ < p < c ~ .  
k---*oo 

In our context, Akf(x)  = Ak,tf(x) where 

n ( k , j ) = n k + j , O < _ j < ~ k ,  and n ( k , j ) = O  if j > £ k - 1 .  

Theorem 1 of [7] shows that  if (nk,~k) satisfies a certain growth condition, then 

Akf(x)  converges for all f in L 1 and hence in L p, and that,  for p > 1, T admits a 

dominated estimate in L p along n(k,j) .  It is also shown that  if limk.-.~ Akf(x)  

exists a.s. for all f E L p for some p, 1 < p < ~ then n(k, j)  satisfies the growth 

condition. See [7] for a precise statement of the growth condition, and examples 

of sequences that satisfy it. Note that combining the results of [7] with Theorem 

2.1 we have the following: 
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3.1 THEOREM: Let T be a power bounded Lamperti operator, or an operator 

dominated by a positive contraction on L p, p > 1. Let {nk,£k} be a double 

sequence of positive integers satisfying the growth condition of [7], and with 

£k+1 > £k. Then 
1 tk--1 

k -=+ O0 

exists a.s. for aJ1 f q Lr,  p > 1. 

Proof." First we show that we have convergence for a dense class of Lr  functions. 

Let g fi L °°, and h such that Th = h. We will consider the function f = g-Tg+h,  

and note that  the set of such f is dense i n / 2 ,  p > 1, by the Mean Ergodic 

Theorem [24]. For such an f we have 

1 tk-t Tnhg _ Tn~+tkg 
lim ~ Z T" '+J( f ) ( z )= lira h + 

k.-.oo ~k k-*oo j=O 

To see that  this limit exists, we now show that 

lim T"~(g)(z) = 0 for a .e .z .  
k-.oo ~k 

o o  o O  For any sequence {nk}k=l, since {~k}~=l is increasing, we have 

7: " 

Hence the series converges a.e., so the terms converge to zero a.e. By the same 

argument 

T"h+ttg(z) .t,O a.s. 
£k 

We now have convergence for f in a dense class of L p. In [7] it is shown that  for T 

induced by a measure preserving point transformation r ,  T admits a dominated 

estimate on L p along any sequence {nk, £k} satisfying the growth condition given 

there. Consequently, Theorem 2.1 implies that T admits a dominated estimate 

along {nk,/k} if T is a positive invertible isometry. By using the techniques 

which were used to prove Corollaries 2.2, 2.3, and 2.4 from Theorem 2.1, we 

see that we have a dominated estimate if T is power bounded Lamperti,  or is 

dominated by a positive contraction. We now have convergence on a dense set, 

and a maximal inequality. Thus the result follows by a standard application of 

Banach's principle. | 
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Remark 1: An example of a sequence that satisfies the hypothesis of Theorem 

3.1 is the sequence nk = 2 2~ , and gk = v/h--L This should be compared with the 

result in [2] where it is shown that 

1 [v'~] 
"-~ E T"+i(f)(z) 

i=0 

fails to converge even for f fi L °°, and T(f)(z)  = f ( r z )  for r an ergodic measure 

preserving point transformation. 

Remark 2: Dunford-Schwartz operators are dominated by positive contractions 

on Lr for each p > 1, consequently for Dunford-Sehwartz operators we have 

convergence of averages of the type considered in Theorem 3.1 

Let Bk = {nk, nk+a,..., nk+t~ } denote a block of £k consecutive integers start- 

ing at nk. Let B = [.Jk~0 Bk. Assume that the growth condition 

(3.1) gk ~ c nk-1 

and the disjointness condition 

(3 .2 )  gk < n k + l  - nk 

of [8] are satisfied. Following Bellow and Losert we will call the sequence formed 

by the elements of B, in the natural order, a block sequence. In [8] it is shown that 

if T is induced by a measure preserving point transformation, then the averages 

along a block sequence, 

1 
IBn[1,N]I  Y]~ TJf(x)'  

ieBn[1,Nl 

converge a.e. for all f E L 1. We can now give a partial generalization for 

operators on L p, 1 < p < (x~. 

3.2 THEOREM: Assume p > 1. Let T be an operator on L p which is dominated 

by a positive contraction, or a power bounded Lamperti operator. Then: 

(1) the averages along a block sequence, 

1 
TJ f (z) ,  

I B n [1,1V][ Z_, iemn[a,N] 
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converge a.e. for all f E L v, 

and 

(2) the maximal function 

My(z)  = sup 1 ~-~ T'f(x)" I 

i 

N IBn[1 ,N] I  "---" jEBo[1,N] I 
is a bounded operator from L p to L p. 

Proof." In the special case, T induced by a measure preserving point transfor- 

mation, it is shown in [20] that the operator M f ( z )  is a bounded operator from 

L p to L p. (This also follows from the result in [8]. Bellow and Losert show that  

when T is induced by a measure preserving point transformation, convergence 

holds for all f E L 1. Consequently the maximal function satisfies a weak type 

(1,1) inequality. By interpolation, this gives the necessary strong type inequality 

for p > 1.) By Corollary 2.4, we now have the same dominated estimate for more 

general T. The convergence result will follow if we have convergence on dense 

class. For the class { f  : f = g - Tg + h, g • L °°, h invariant}, convergence 

follows as in the proof of Theorem 3.1. | 

Remark: This result and Theorem 3.1 do not extend to L 1 without additional 

restrictions on the operator. Chacon [13] has constructed an example of a positive 

contraction on L 1 for which even the usual Cesaro averages diverge a.e. for f • 

L 1. Thus the fact that we do not get a theorem for L 1 is not just a consequence of 

our methods. There is a significant difference between L 1 and L p, p > 1. There 

are special cases where a transference argument can be made for weak type (1,1) 

inequalities, but Chacon's example shows it cannot be done for all positive L 1 

contractions. 

In [6] it was shown that given p0 > 1 a block sequence can be perturbed in 

such a way as to preserve a.e. convergence for f E LP, p >_ Po, but such that 

convergence fails for some f E L r, for each r < p0. This result can be generalized 

to the types of operators considered above. 

3.3 COROLLARY: Let Bk denote a block of consecutive integers satisfying con- 

clitions (3.1) and (3.2). For each k, let Dk denote a set of dk integers between 

Bk and Bk+l and let D = U°~=I Dk. If 

£ ( dt + d2 + " " + d~ 

k= l  
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then: 

(1) the maximal function associated with the set D U B is bounded from L p to 

L p for each p > Po, 

and 

(2) the associated limit exists a.e. for a11 f E L p, p >_ po. 

Proof." In [6] we are shown that for T induced by a measure preserving point 

transformation, convergence holds for f E L p, p > po. However this only gives 

a weak type inequality for L p° (hence a strong type inequality for p > p0)- To 

obtain a dominated theorem for L p° we proceed as follows. Let S = D U B. The 

maximal function 

M f ( x ) = s u p  
N 1 4 IS n [1,NIl ~ T'f(z) 

jeSn[,,N] 

can be dominated by the sum of two related maximal functions. Define 

I 
M, Y(x) = sup [ 1 

N ISn[X,N]l ~ TJ/(x) 
I j~Bn[1,N] 

and 

M 2 f ( x ) = s u p  
N IS n [1, N]] TJf(x)  

jEDo[1,N] 

Note that  [[Mf[[p,, < [IMlf[[po + [[M2f[[po, and that M~f(x) is smaller than the 

maximal function for a block sequence. Therefore, as in Theorem 3.2 above, we 

have IIMlfllp ___ CUl l ,  for all p > X, and in particular for P0. To study M2f(z)  we 
k use a different argument. Let Sk = Uj~l Dj, Ak = Y~jk__ 1 £j, and 6k = Y~j=I dj. 

Define 

Akf(x)  = 1 Z TJ f(x)" 
Ak jes~ 

Note that 

HAkfl]P <- Z ~ }ITj flip -< Z ~ CHfHP <- C l]flln. 
jES~ jES~ 
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Also note that M2f(x) <_ supk IAk.f(x)l. Consequently 

IIM~fllP, _< 

< 

II sup IAk.fl]l~ 
k 

II( E [AkflP)x/'[ig 
k=l  

o o  

<- i ~ IAkf(x)lPdx 
k=l  

O 0  

_< 
k = l  " 

k=l  

--~. ~k ~p 
< C'llfll.~ ~..~(, g )  • 

k = l  

By the hypothesis, if p >_ p0 then the sum is finite, and we have the desired 

estimate for T induced by a measure preserving point transformation. Thus by 

Corollary 2.4 we have the maximal inequality for the more general operators. 

To obtain the necessary convergence on a dense subset, we consider as usual 

{ f : f = g - T g + h ,  g E L °°, h invariant}. We already know we have convergence 

on the block sequence portion of our sequence. The above argument and the 

Borel-Cantelli lemma show that for p >_ po, Akf(x) > e for only finitely many 

k. From this we see that convergence holds. | 

4. D u n f o r d - S e h w a r t z  O p e r a t o r s  

Let {n~} be an increasing sequence of positive integers, and let T be an operator 

of L p, 1 <_ p <_ ~ .  We will say that {nk} is a good sequence for T in L p if 

N - 1  

E 
k=O 

for all f E L p. (Recall that the sequence {nk} corresponds to the sequence 

n(k,j)  = n I for all k in the notation of Section 2.) 

In this section we will show that if {nk} is a good sequence for T in L p, for all 

p, 1 < p < oo, and all T induced by measure preserving point transformations, 

then each Dunford-Schwartz operator satisfies a dominated estimate in L p, 1 < 
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p < co, along {nk}, and that for all Dunford-Schwartz operators, convergence 

holds for f E L p. This will show that the sequences considered by Bourgain and 

Wierdl are good in L p, 1 < p < 0% for all Dunford-Schwartz operators. Bourgain, 

in [10], [11], and [12], and Wierdl [29] show that certain sequences are good in 

L p, 1 < p _< oo, for T induced by measure preserving point transformations, and 

that these operators admit a dominated estimate along the sequences considered. 

This implies by Corollary 2.4 that these sequences are good in L p, 1 < p < c~ 

for Dunford-Schwartz operators. 

4.1 THEOREM: Let {nk} be a sequence that is good for all operators on L p, 

1 < p < oo, which are induced by one-to-one measure preserving point transfor- 

mations, then {nk} is good in L p for all Dunford-Schwar~z opera~ors. 

Proof: First note that since we have convergence for f E L p, 1 < p < oo, for 

all T induced by one to one measure preserving point transformations, we also 

have for each fixed p > 1 and all such T a dominated estimate in L p. Hence by 

Corollary 2.4, all Dunford-Schwartz operators admit a dominated estimate in £2 

along {nk }. Consequently it is enough to prove convergence on a dense subspace 

of L p. To do this we adapt the proof of Theorem 2.19 of [4]. 

(i) The sequence {nk} is good for all operators induced in L p spaces by arbi- 

trary, but not necessarily invertible, measure preserving transformations. This 

follows in the usual manner by building two-sided shifts from one-sided shifts, 

and building one-slded shifts from measure preserving point transformations. 

(ii) The sequence {n~} is good in L p for all operators of the sort T( f ) ( x )  = 

v(x) f (rx) ,  where v E L °°, 0 _< v < 1, and r is a measure preserving point 

transformation. 

To see this, we will show that we have convergence along {nk} for f bounded. 

This will prove the theorem because we then have convergence on a dense subset 

of L p, and we already have the associated dominated estimate for T along {nk}. 

Thus the result will follow by a standard application of Banach's principle. 

To obtain convergence on the dense set, let I ,  = [0, 1], and let A,, denote 

Lebesgue measure on I , .  Define Y = 1-In°°=0 In and )~ = 1-I~°=0 A,~. Let ~,~ be the 

nth coordinate function on Y. Define T : X x Y ~ {0, 1, 2 , . . .}  by 

~(z, y) = min{n : ~.(y) > v(r"x))  



48 R . L .  J O N E S  AND J. OLSEN Isr. J. Math.  

with the convention that min{0} = +co. Then 

> = 12[ 
k=0 

SO 

Tn(f)(x) = f Xl(,:,,):~(~,,)>n_l}(y)f('rn x)d)t(y) 

and 

/ N-1 1 1 
-~ T"k(f)(x) = -~ ~_, X((~,y):~(x,~)>n~-l}(Y)f(rnkx)dA(Y) • 

k=O k=0 

Let E denote {(x, y ) :  ~(z, y) < co}. Then for each (z, y) E E we are averaging 

the terms of a finite sequence, or a bounded convergent sequence. For (z, y) ~ E, 

convergence follows by assumption since X{(x,v):~(,,y)>,,,-1}(y) = 1 for all k, 

and r is a measure preserving point transformation. The result follows by an 

application of the dominated convergence theorem. 

(iii) The sequence {nk} is good for all operators on LP of the sort T(f)(x) = 
v(x)f(vz),  where v takes on complex values, and Ivl < x. 

This follows from the standard trick of Ryll-Nardzewski [28]. Let (Y, S, A) = 

[0, 21r) with normalized Lebesgue measure. Let 

B = X x Y ,  B = ~ ' x S ,  u = / ~ x A .  

Write v(z) = r(z)e i~(') and define a :  B ~ B by a(z,O) = (T(z), @(z) + 0), 
where ~(x) + 0 is computed rood 2~r. Define V on LP(B, 13, t,) by V(g)(z, 0) = 
r(z)g(a(z, 0)). If f E LP(X, ~',/~) put g(z, 0) = f(z)e i°. Then by (ii) 

1 N-1 
lim ~ ~ Vnkg(x,O) exists u a.e. (x,e). 

N----~c~ k=O 

Since V"g(z, 0) = ei°T"(f)(z), the theorem follows in this case. 

(iv) Now let T be a Dunford-Schwartz operator on L p. Then we know there 

exists a positive Dunford-Schwartz operator S on Lr(x )  such that ITf(x)[ < 

sir(z)]. Let C and D be the conservative and dissipative parts of the Hopf 

decomposition of X,  for S considered as an operator on Lx(X). (See [17] or 

[22].) For all f >_ O, f ~ LI(X),  ~k%o Skf(z)  < co on D, so 

lim -1 T"k f(x) < lim _1 S,hlf(x)[ = 0 
n--.*¢~ I rt k=O n-..-*c~ /Z k=O 
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for all f • Lz(X), and in particular, all f • LP(X), p > 1. If f • Lz(C), 

Tf  • LI(C) by Theorem 1.8 of [22, page 118]. Further, since S is an L°°(X) 
contraction, S(1) < 1, and in particular S(1c) = 1c. Using the fact that  X is a 

Lebesgue space, and .T the a-algebra of Borel sets, there exists a substochastic 

kernel P(z, A), x • X, A • .T (i.e. P(z, .) is a subprobability for each z • X and 

P(.,  A) is an ~" measurable function for every A • ~ )  such that  for every A • ~', 

P(x,A) is a version of S(1A)(Z). (See [25, page 192].) 

A similar argument shows the existence of a complex valued kernel In(Z, A) 
which is a version of T(1A)(Z) and such that [#(z,A)I <_ P(z,A) for all x • X 

axad A • ~ .  Put  
dt,(~,-) 

g(x,y)-  dP(z, . )"  

We need to show that we can find a version of g(x, y), say G(z, y), which is 

~" × .T" measurable. To see this we argue as in [15, page 617]. Let {An},,~-_z be a 

sequence of open sets forming a base for the open sets in the topological space 

X. For each n let .Tn denote the a-field generated by the sets (Az,A2,...,An). 
Then .Tr, C .Tn+z and limn--.,oo .T, = .T. Define 

/~,(B) for y • B • ~ - , ,  B a n a t o m ,  P(z,B)#O, g, (~ ,  v) = p(~ ,  B) 

and 

gn(x,y) = O f o r y e B E S V n ,  B a n a t o m ,  P(z,B) = O. 

With this definition, each g,  is ~" x ~'n measurable. For each x, by the martingale 

convergence theorem, limn-oogn(z,y) exists a.e. P(x, dy) and equals g(z,y). 
Define 

S limn--.oo gn(x, y) if the limit exists and is finite, 
G(z, Y) 

0 otherwise. 

Then clearly G(x, y) is ~" x ~" measurable and for each z • X,  G(x, y) = g(z, y) 

a.e. P(x, dy). The complex valued function G(z, y) satisfies 

Tf(x) = / V(x, y)P(x, dy)f(y) 
I 

for each f • LI(X), and hence f • L'(X) for each p > 1. We also have 

IG(z,y)I _< 1. To see this let Az = {y : G(z,y) > 1}. Then 

T(1A.)(z) = f G(z, y)P(z, dy)lA, (y) 

> f P(x, dy) = P(z,A,) 
I 

J A  z 

= S(1A.)(~) ,  



50 R .L .  JONES AND J. OLSEN Isr. J. Math. 

a contradiction. 

Now let ~ = ~In=o Xn, where each Xn = X, 7-( = ~ × 9 v × ~" × - . . .  Denote by 

Px the measure induced by defining 

P~(Ao x A1 x As x ... x An x X . . . )  

= XAo(Z) fA, f.¢ "" fA._ P(z , , -x ,A, )P(z , , - s ,dx , , -x) ' "  P(z, dz~) 

and by P~ the measure induced by 

P~(Ao x A1 x As x ... x A ,  x X . . . )  

= / A  Pz(Ao × A1 × As × ' "  x A,, × X. . . )dp(x)  
o 

Define 0 : a ~ fl by O(zo,x~,...) = ( z , , z s , . . . ) .  We now have a Markov 

process (f~, 7"/, P~,,/9). Assume that P~, is invariant under 0. Let Y = G(~0, ~ ) ,  

where ~, is the nth  coordinate function on ft. Define W on LP(ft, 7-/, Pt,) by 

Wg(w) = Y(w)g(O(w)). To show that {nk} is good for T it is enough to show 

convergence for bounded functions, which are dense in all L p, 1 < p <_ ~ .  For 

such an f ,  let g = f o ~0. By (iii) 

1 N - 1  
-~ ~ Wn~ g c o n v e r g e s  Pt~ a.s.  

k=0 

However, 

Tf(x) = Ix G(x, xl)P(x, dxl)f(xl) 

= f ,  V(x, xa, ~s,...)~(~1, ~s,...)dR, 

and, more generally, letting w = (x, xl ,  x2, . . . ) ,  we have 

T " / ( ~ )  = fx "" fx G(~,~,)... C(~,,_,,~,,)e(~,,_~,d~,,)... P(~,d~)f(~,) 

= / o  V(w)V(lgw)... V(O"-~w)g(O"w)dP= 

= Ex(W"g(.)). 
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Thus T n f ( x )  = Ex(Wng) ,  where Ez is the conditional expectation operator with 

respect to the field ~" x X x X . . . .  The theorem now follows from the bounded 

convergence theorem for conditional expectations. 

It remains to show that P~, is invariant under 0. This is known, see for example 

[1], but the proof is included here for completeness. It is enough to show 

P~(o-l(A1 x A2 x . . .  x A ,  x X . . . )  = P~,(X x A1 x A2 x . . .  x An x X . . . )  

= P~,(A1 x A2 x . . .  x An x X . . . )  

but 

PI,(X x A1 x A2 x . . .  x An x X . . . )  

= / x P x ( X  x A1 x A2 x As x . . .  x An x X ' " ) d v ( z )  

= I X  I x  P, ,(A1 x A,  x A3 x "'" X An x X . . . ) P ( x , d x l ) d p ( x ) .  

To finish the argument we need the following lemma. 

4.2 LEMMA: For any bounded integrable function f ,  we have 

Proof,, First assume that f ( ~ )  = XE(~)  for some measurable set E ,  Whe~ we 

have 

~ o m  this we see that if S(~) = ET-_~ a~x~,(~) then 

Ix IX f(xl)V(x'dxl)d[A(x)= ~-~ai / fx )('EI(xl)P(x'dxl)H#(x) 
i=1 J X  

n 

= Z a,p(E,)  
i=1 

= I x  f ( x )dp(x ) .  

Finally, let fn be a sequence of simple functions increasing to the non-negative 

function/ .  Then apply the monotone convergence theorem to prove the lemma. 
| 
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Writing f ( z l )  = Px,(A1 × A2 × A3 × . - .  × A,, × X . - . ) ,  and using the lemma, 

we now have 

/ x  /xP~,(Ax x A2 x A3 x ... x A, x X...)P(z, dxl)dl.t(z) 

= Ix f× f(xl)P(x, dxl)d#(x)= fx  f(x)dl't(x) 

= fxP~(A1 x A2 x A3 x . . .  x A,, x X...)d#(z). 

= fa, fa2"" fa._ P(z.-1,A.)P(z.-2,dz.-1) '" P(zl,dz2)dg(zl) 

= Pt,(A1 x A2 x . . .  x A, x X x...) 

as required. | 

4.3 COROLLARY: Let nk = k 2 (or more generally, k t, t an integer), or let n~ 

denote the kth prime. Let p > 1, and assume T is a Dunford-Schwartz operator. 

Then {nk} is good for L r and T. 

Proof: Bourgain ([101, [111, [12]) has shown that for T induced by a measure 

preserving point transformation, T admits a dominated estimate in Lp along 

{nk} with nk = k t, t an integer. Wierdl [29] has shown the same thing for nk 

the kth prime. Theorem 4.1 now gives the result. | 

5. C o n c l u d i n g  R e m a r k s  

We have shown that if any aperiodic isometry T admits a dominated estimate 

in Lp, I < p < ~ ,  along {nk}, then all positive invertible isometrics do as 

well, as do Dunford-Schwartz operators. We have thus shown that if Dunford- 

Schwartz operators admit a dominated estimate along {nk}, then if {n~} is a 

good sequence in Lp for all operators on L v induced by measure preserving point 

transformations, then it is good in L p, 1 < p <_ oo, for all Dunford-Schwartz 

operators. This, in particular, implies that the sequences considered by Bourgaln 

and Wierdl are good for Dunford-Schwartz operators in L p. 

This paper leaves open the question if these sequences are good in L p for 

positive invertible isometries or indeed positive contractions of L p, p fixed, 1 < 

p < oo. In the light of the results of Section 2, what is needed is a dense subset of 

L p such that Cesaro averages of iterates of T taken along the subsequence {nk} k°°_- 1 
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converge for f in this class. This question will be answered in a subsequent paper 

by the use of variational inequalities. 

To use the results of this paper for other sequences {nk} we would need to 

show that  {n~} is good for all operators of L p, 1 < p < co, induced by measure 

preserving transformations, and that for at least one such T that  is aperiodic, T 

admits a dominated estimate in L p along {nk}. These two results would then 

imply {nk} is good for L p, 1 < p < co, and all Dunford-Schwartz operators. 
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